THE CHROMATIC NUMBER OF THE PRODUCT OF TWO %1-CHROMATIC GRAPHS CAN BE COUNTABLE

A. HAJNAL

Received 23 August 1984 Revised 8 November 1984

We prove (in ZFC) that for every infinite cardinal \varkappa there are two graphs G_0 , G_1 with $\chi(G_0) = \chi(G_1) = \varkappa^+$ and $\chi(G_0 \times G_1) = \varkappa$. We also prove a result from the other direction. If $\chi(G_0) \ge \chi(G_0) = \chi(G_0) =$ $\geq \aleph_0$ and $\chi(G_1) = k < \omega$, then $\chi(G_0 \times G_1) = k$.

0. Introduction, Notation, Problems

A graph $G = \langle V(G), E(G) \rangle = \langle V, E \rangle$ is a structure of the form $E \subset [V]^2$. $\chi(G)$ denotes the chromatic number of G.

If $G_i = \langle V_i, E_i \rangle$ (i < 2) are graphs, $G_0 \times G_1$ is the graph $\langle V_0 \times V_1, E_0 * E_1 \rangle$ where $V_0 \times V_1$ is the usual Cartesian product, for $u \in V_0 \times V_1$, $u_0 \in V_0$, $u_1 \in V_1$, $u = \langle u_0, u_1 \rangle$ and for $u, v \in V_0 \times V_1$ $\{u, v\} \in E_0 * E_1$ iff $\{u_i, v_i\} \in E_i$ for i < 2.

It is clear from the definitions that

(1)

 $\chi(G_0 \times G_1) \le \min \left(\chi(G_0), \chi(G_1) \right)$ holds for all graphs G_i i < 2. It was conjectured in Hedetniemi's paper [2] that at least for finite graphs equality holds in (1). This is obvious if $\chi(G_i) \leq 3$ for i < 2, and the conjecture is proved in a paper of this issue ([1]) in case $\chi(G_i)=4$ (i<2) by M. El-Zahar and N. Sauer. The main aim of this note is to point out that for infinite graphs equality does not always hold in (1).

Theorem 1. For every infinite cardinal κ , there are graphs G_i , i<2 with $\chi(G_i)=\kappa^+$ and such that

$$\chi(G_0\times G_1)=\varkappa.$$

On the other hand it is quite easy to show that in (1) equality holds if $\chi(G_0) = \aleph_0$ and $\chi(G_1) < \aleph_0$ (see Theorem 2). (Here \aleph_0 can be replaced by a strongly compact cardinal.)

The question arises if x^+ can be replaced in Theorem 1 by some larger cardinal. Here the answer seems to depend on the set theory we are working with.

It was proved by L. Sokoup that the following is consistent with ZFC+GCH:

There are graphs G_i i < 2 with $\chi(G_i) = |V_i| = \aleph_2$ such that $\chi(G_0 \times G_1) = \aleph_0$. (2)

138 a. hajnal

Note that (2) easily implies that each subgraph of size \aleph_1 of say G_0 has chromatic number \aleph_0 , hence by a result of Laver and Foreman (2) can not be proved in ZFC+GCH.

Problem. Is it consistent with ZFC+GCH that there are graphs with $\chi(G_0)=$ $=\chi(G_1)\geq \aleph_{\omega}$ and $\chi(G_0\times G_1)<\aleph_{\omega}$?

1. Proofs

Let $\varkappa \ge \omega$, $A \subset \varkappa^+$. Set

 $V_A(\varkappa) = V_A = \{f: f \text{ is a function } \land f \text{ is one-to-one } \land D(f) \in A \land R(f) \subset \varkappa\};$

$$f \prec g \Leftrightarrow f \subsetneq g$$
.

 $\langle V_A, \prec \rangle$ is a tree (in the set theoretic sense i.e. for each $f \in V_A$ the set $\{g \in V_A: g \leq f\}$ is well-ordered). The following is an unpublished but well-known result of F. Galvin and R. Laver.

Theorem. Assume A is a stationary subset of x^+ . Then the tree $\langle V_A, \prec \rangle$ is not x-special i.e. it is not the union of $\leq x$ antichains.

The comparability graph Comp $\langle V_A, \prec \rangle$ of the tree $\langle V_A, \prec \rangle$ is $G_A = = \langle V_A, E_A \rangle$ where $E_A = \{ \{f, g\} \in [V_A]^2 \colon f \prec g \lor g \prec f \}$, and the fact that $\langle V_A, \prec \rangle$ is not \varkappa -special means exactly that $\chi(G_A) \cong \varkappa^+$.

Proof of Theorem 1. Let A_0 , A_1 be two disjoint stationary subsets of \varkappa^+ . By the Galvin—Laver result it is sufficient to see that for $G = G_{A_0} \times G_{A_1}$, $\chi(G) \le \varkappa$ holds. Now $V_{A_0} \times V_{A_1} = K_0 \cup K_1$ where

$$K_0 = \{ \langle f_0, f_1 \rangle \in V_{A_0} \times V_{A_1} \colon D(f_0) < D(f_1) \}$$

$$K_1 = \{ \langle f_0, f_1 \rangle \in V_{A_0} \times V_{A_1} \colon D(f_1) < D(f_0) \}.$$

By symmetry it is sufficient to see that G has a good coloring with \varkappa colors on K_0 . Define $F: K_0 \to \varkappa$ by $F(f_0, f_1) = f_1(D(f_0))$. To see that F is a good coloring let $\langle f_0, f_1 \rangle, \langle g_0, g_1 \rangle \in K_0$, $\{\langle f_0, f_1 \rangle, \langle g_0, g_1 \rangle\} \in E_{A_0} * E_{A_1}$. Set $D(f_i) = \alpha_i$, $D(g_i) = \beta_i$ for i < 2. Then $\alpha_0 < \alpha_1$, $\beta_0 < \beta_1$ and we may assume $\alpha_1 < \beta_1$. $\{f_0, g_0\} \in E_{A_0}$ implies $\alpha_0 \neq \beta_0$. $\{f_1, g_1\} \in E_{A_1}$ implies $f_1(\alpha_0) = g_1(\alpha_0)$. Hence $F(f_0, f_1) = f_1(\alpha_0) = g_1(\alpha_0) \neq g_1(\beta_0) = F(g_0, g_1)$ because g_1 is one-to-one.

- S. Todorčević pointed out to me the following facts.
- A) Under some set theoretical hypothesis (say \Diamond) one can construct graphs $|G_0| = |G_1| = \aleph_1$ not containing independent sets of size \aleph_1 and such that $\chi(G_0 \times G_1) \leq \aleph_0$.
- B) Assume S and T are trees. Let $S \otimes T$ denote $\{\langle s, t \rangle \in S \times T \text{ with } ht(s) = ht(t)\}$ with the Cartesian ordering. $S \otimes T$ is a tree, if $S \otimes T$ κ -special then Comp $(S) \times \text{Comp}(T)$ has chromatic number at most κ , and this gives many new examples establishing Theorem 1. Some examples of such trees can be found in his paper [3].

Finally we prove

Theorem 2. Assume $\chi(G_0) \ge \aleph_0$, $\chi(G_1) = k+1$, $k < \omega$. Then $\chi(G_0 \times G_1) = k+1$.

Proof. Let $G_0 = \langle V_0, E_0 \rangle$, $G_1 = \langle V_1, E_1 \rangle$. By compactness, we may assume $|V_1| < \aleph_0$. Let $f \colon V_0 \times V_1 \to k$ be a good k-coloring of $G_0 \times G_1$. For $x \in V_0$ let $f_x(y) = f(x, y)$ for $y \in V_1$. By the assumption, f_x is not a good coloring of G_1 , hence if $f_x = f_{x'}$ for $x \neq x' \in V_0$, then $\{x, x'\} \notin E_0$. This implies that

$$\chi(G_0) \leq k^{|V_1|} < \aleph_0. \quad \blacksquare$$

References

- [1] M. EL-ZAHAR, N. SAUER, The chromatic number of the product of two 4-chromatic graphs is 4. Combinatorica, 5 (1985).
- [2] S. T. Hedetniemi, Homomorphisms of graphs and automata, *Univ. of Michigan Technical Report 03 105-44-T*, 1966.
- [3] S. Todorčević, Stationary sets, Trees and Continuums, Publ. Inst. Math. (Beograd) 27 (41) (1981), 249—262.

A. Hajnal

The Mathematical Institute of the Hungarian Academy of Sciences H—1364, Budapest, P.O.B. 127, Hungary